KAPITEL: KRAFT-WÄRME-KOPPLUNG

TECHNOLOGIEN

PROF. MARIO ADAM

Dieses Werk ist lizensiert unter einer Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. Ausgenommen von der Lizenz sind die verwendeten Logos sowie alle anders gekennzeichneten Elemente. https://creativecommons.org/licenses/by-sa/4.0/deed.de

Ein Kooperationsvorhaben empfohlen durch die:

INNOVATION DURCH KOOPERATION

Gefördert durch:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Erneuerbare Energien und Effizienztechnologien

Prof. Dr.-Ing. Mario Adam

E² - Erneuerbare Energien und Energieeffizienz ZIES - Zentrum für Innovative Energiesysteme

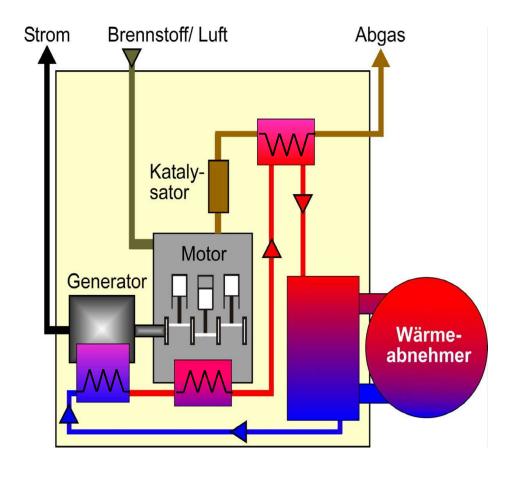
Hochschule Düsseldorf
Fachbereich Maschinenbau und Verfahrenstechnik

Kapitel "Kraft-Wärme-Kopplung"

Technologien

Kraft-Wärme-Kopplung (KWK)

Gleichzeitige Produktion von Strom (bzw. Kraft) und Wärme


Eingesetzte Technologien

- Blockheizkraftwerke (BHKW)
 - Hubkolbenmotoren
 - Stirlingmotoren
 - Brennstoffzellen
- Turbinen
 - Gasturbinen
 - Dampfturbinen bzw. klassische Dampfkraftprozesse zur Stromerzeugung + Wärmeauskopplung

Gesamtwirkungsgrade

• thermisch + elektrisch bis 100%

Beispiel: BHKW mit Hubkolbenmotor

BHKW - Hubkolbenmotor

Eigenschaften

- bewährte BHKW-Standardtechnik!
- viele Hersteller, viele Leistungsstufen (von kW bis MW)
- $\eta_{\text{elektrisch}} = 25 \dots 50\%$
- Nutzwärmetemperatur = 80 ... 130°C

Gerätebeispiele

- klein: "Dachs", Fa. SenerTec
 - 5,5 kW_{el}, 14,8 kW_{th} η_{el} = 27 %, η_{th} = 73 % (mit Brennwert-WÜ)
 - Erdgas-Ottomotor oder Diesel-Motor
- groß: TCG 2032 V16, Fa. MWM
 - $-4,3 \, MW_{el}, \, 3,7 \, MW_{th}$
 - η_{el} = 44,1 %, η_{th} = 42,7 %
 - L x B x H: 9,2 m x 2,8 m x 3,4 m

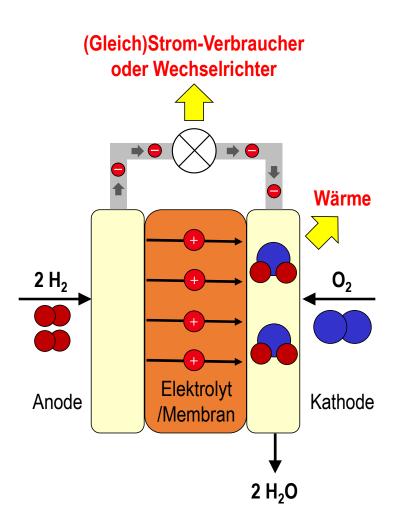
Micro-BHKW "Dachs" Fa. Senertec



BHKW - Stirling-Motor

Funktionsprinzip und Eigenschaften

- Damit ein Stirling-Motor läuft, muss er an einer Stelle des geschlossenen Kreisprozesses beheizt und an einer anderen Stelle gekühlt werden (über Wärmeübertrager).
- Beheizung: durch Abgas einer stationären externen Verbrennung
- Kühlung: durch Abfuhr von Wärme z.B. an Heizungswasser
- η_{elektrisch} nur 10 20 %


Motor der Microgen Engine Corporation

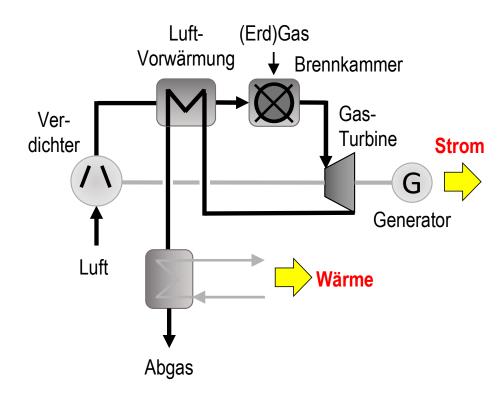
- von mehreren Herstellern für "Stromerzeugende Heizungen" genutzt z.B. mit Holzpellets (Fa. Ökofen); wenige Produkte am Markt
- ca. 0,5 ... 1 kW_{el} (η_{el} = 15 %), ca. 3 ... 6 kW_{th}

BHKW - Brennstoffzelle

Funktionsprinzip und Eigenschaften

- "kontrollierte" Reaktion von H₂ und O₂ zu H₂O ("kalte Verbrennung")
- · Wichtige Brennstoffzellentypen
 - PEM-Brennstoffzelle: mit Protonen leitender Membran, ca. 80°C Betriebstemperatur, direkt mit H₂ betrieben oder vorgeschaltete CH₄-Reformierung, gut regelbar
 - SOFC: Oxidkeramische Brennstoffzelle, Betriebstemperatur ca. 500°C, interne Methan-Reformierung, verträgt häufiges An-/Abfahren nicht so gut
- Vorteile: großes $\eta_{\text{elektrisch}}$ (35 ... 60 %), Leistung modular skalierbar von W ... MW
- Nachteile: geringe Lebensdauer des Brennstoffzellen-Stacks, hohe Kosten, Wasserstoff-Erzeugung aus Erdgas
- · volatiler, aufstrebender Markt

Gasturbine


Eigenschaften

- bewährte Technik
- · mehrere Hersteller
- viele Leistungsstufen (von rd. 50 kW - 500 MW)
- auch Hochtemperatur-Wärme bis 500°C lieferbar
- kompakt gebaute Aggregate mit hoher Leistungsdichte

Gerätebeispiele

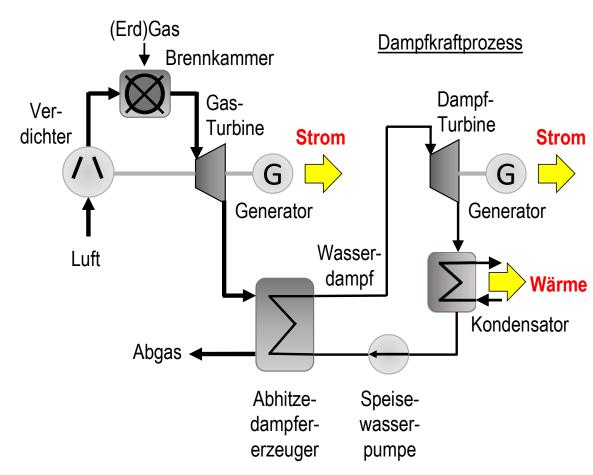
- klein: Mikrogasturbine Capstone C50
 - 50 kW $_{\rm el}$
 - $\eta_{el} = 26\%$
- groß: Siemens SGT5-8000H
 - 450 MW_{el}
 - η_{el} = 41 %

Funktionsprinzip

Dampfturbine in (GuD-) Heizkraftwerk

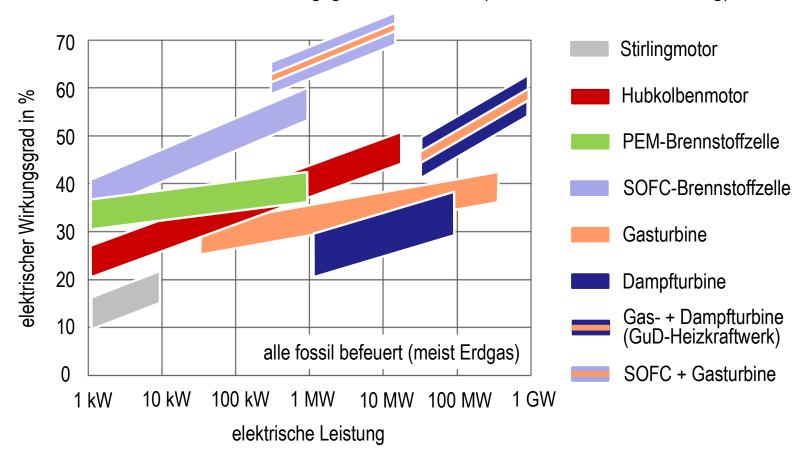
Eigenschaften

- bewährte Technik
- große Leistungen


Dampfturbine in Heizkraftwerk

- konventioneller Dampfkraftprozess
- beheizt durch Verbrennung von Kohle, Müll, Biomasse, Erdgas etc.

GuD-Heizkraftwerk


- Dampfkraftprozess, beheizt vom Abgas einer vorgeschalteten Gasturbine
- η_{elektrisch} bis über 60%

Funktionsprinzip GuD-Heizkraftwerk

KWK-Technologien - Überblick

- elektrischer Wirkungsgrad: gerätespezifisch, steigt mit der Geräte-Nennleistung
- elektrischer + thermischer Wirkungsgrad = 80 ... 90% (100% bei Brennwertnutzung)

KAPITEL: KRAFT-WÄRME-KOPPLUNG

ÖKOLOGISCHE BEWERTUNG: ENERGIEEFFIZIENZ, PRIMÄRENERGIEFAKTOR PROF. MARIO ADAM

Dieses Werk ist lizensiert unter einer Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. Ausgenommen von der Lizenz sind die verwendeten Logos sowie alle anders gekennzeichneten Elemente. https://creativecommons.org/licenses/by-sa/4.0/deed.de

Ein Kooperationsvorhaben empfohlen durch die:

INNOVATION DURCH KOOPERATION

Gefördert durch:

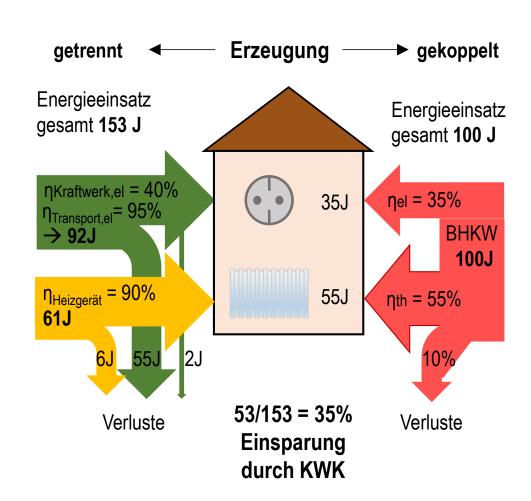
Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Erneuerbare Energien und Effizienztechnologien

Prof. Dr.-Ing. Mario Adam

E² - Erneuerbare Energien und Energieeffizienz ZIES - Zentrum für Innovative Energiesysteme

Hochschule Düsseldorf
Fachbereich Maschinenbau und Verfahrenstechnik


Kapitel "Kraft-Wärme-Kopplung"

Ökologische Bewertung: Energieeffizienz, Primärenergiefaktor

KWK - Endenergieeinsparung

Endenergieeinsparung im Vergleich zur getrennten Strom/Wärme-Erzeugung

- Beispiel Bild → 35% Einsparung
- abhängig von angesetzten Geräte-Wirkungsgraden
- Vergleich Stirling-BHKW (η_{el} = 15%, η_{th} = 85%) mit Gas-GuD-Kraftwerk (η_{el} = 60%) und Brennwert-Kessel (η_{th} = 100%)
 → 10% Einsparung
- Vergleich großes Hubkolben-BHKW (η_{el} = 45%, η_{th} = 42%) mit altem Kohle-Kraftwerk (η_{el} = 35%) und NT-Kessel (η_{th} = 80%) \rightarrow **45**% Einsparung
- weiterer BHKW-Vorteil: verbrauchsnahe Stromerzeugung
 → geringe Stromnetzbelastung

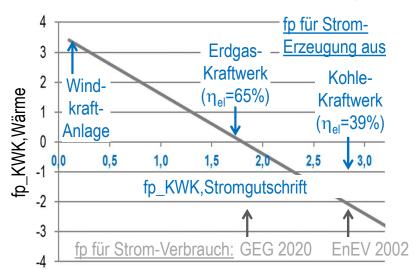
KWK - Primärenergiefaktor f_p der Wärme (I)

Berechnung nach aktueller Norm

(GEG bzw. DIN 18599 Anlage 4)

$$f_{p,KWK,W\ddot{a}rme} = \frac{PE_{KWK} - PE_{KWK,Stromgutschrift}}{Q_{KWK,W\ddot{a}rme}}$$

mit


- Q_{KWK,Wärme}: in der KWK-Anlage produzierte Wärme
- PE_{KWK}: in der KWK-Anlage eingesetzte Primärenergie, z.B. Erdgasverbrauch * 1,1 mit f_{p,Erdgas} = 1,1
- PE_{KWK,Stromgutschrift}: Primärenergie-Gutschrift für den von der KWK-Anlage produzierten Strom
 = KWK-Stromproduktion * 2,8
 mit f_{p,KWK,Stromgutschrift} = 2,8,
 begründet durch Verdrängung von Kohlestrom in Mittel- und Spitzenlast

Beispiel

Erdgas-GuD-Kraftwerk in Düsseldorf 600 MW_{el}, 300 MW_{th}, η_{el} = 61%

 $f_{p,KWK,Wärme} = [(600/0,61)*1,1 - 600*2,8] / 300 = -1,99$ $\Rightarrow fp = 0,0 \text{ (fp-Werte < 0 sind nicht erlaubt)}$

fp_{KWK,Wärme} in Abhängigkeit von fp_{KWK,Stromgutschrift}

KWK - Primärenergiefaktor f_p der Wärme (II)

Berechnung nach Carnot-Methode

("Exergie-Allokation" nach DIN EN 15316-4-5:2017-09)

 $f_{p,KWK,W"arme} = Q_{Brennstoff}$ für Wärme $f_{p,Brennstoff}$

 $Q_{Brennstoff \ für \ W\"{a}rme} = \frac{Exergie(W\"{a}rme)}{Exergie(W\"{a}rme) + Exergie(Strom)}$

mit

Exergie(Wärme) = Wärmemenge/-leistung · η_{Carnot}

$$\eta_{Carnot} = \frac{Temperatur\ der\ W\"{a}rme - Umgebungstemperatur}{Temperatur\ der\ W\"{a}rme}$$

(Temperaturen in Kelvin, d.h T in °C + 273,15 K; Exergie der Wärme steigt mit Temperatur der Wärme!)

Exergie(Strom) = Strommenge/-leistung
 (Strom = 100% Exergie)

Beispiel

Erdgas-GuD-Kraftwerk in Düsseldorf 600 MW_{el}, 300 MW_{th}, η_{el} = 61% (Fernwärmetemperatur = 100°C)

$$f_{p,KWK,W"arme} = 0.118 \cdot 1.1 = 0.13$$

mit

$$Q_{Brennstoff \ f\"ur \ W\"arme} = \frac{80,4 \ MW}{80,4 \ MW + 600 \ MW}$$
$$= 0,118$$

$$\eta_{Carnot} = \frac{373 \, \text{K} - 273 \, \text{K}}{373 \, \text{K}} = 0,268$$

KAPITEL: KRAFT-WÄRME-KOPPLUNG

BEITRIEBSARTEN, GERÄTEDIMENSIONIERUNG, WIRTSCHAFTLICHKEIT PROF. MARIO ADAM

Dieses Werk ist lizensiert unter einer Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. Ausgenommen von der Lizenz sind die verwendeten Logos sowie alle anders gekennzeichneten Elemente. https://creativecommons.org/licenses/by-sa/4.0/deed.de

Ein Kooperationsvorhaben empfohlen durch die:

INNOVATION DURCH KOOPERATION

Gefördert durch:

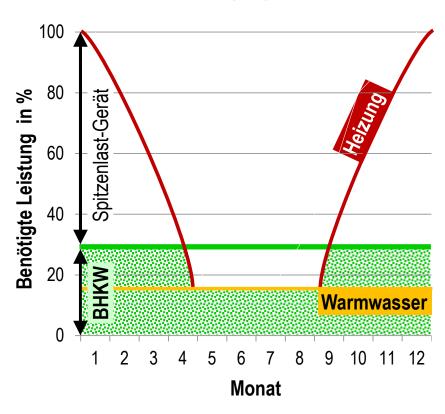
Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Erneuerbare Energien und Effizienztechnologien

Prof. Dr.-Ing. Mario Adam

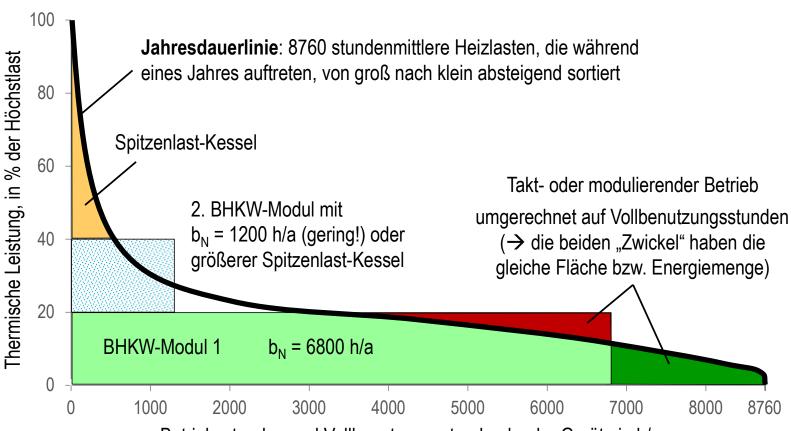
E² - Erneuerbare Energien und Energieeffizienz ZIES - Zentrum für Innovative Energiesysteme

Hochschule Düsseldorf
Fachbereich Maschinenbau und Verfahrenstechnik


Kapitel "Kraft-Wärme-Kopplung"

Betriebsarten, Gerätedimensionierung, Wirtschaftlichkeit

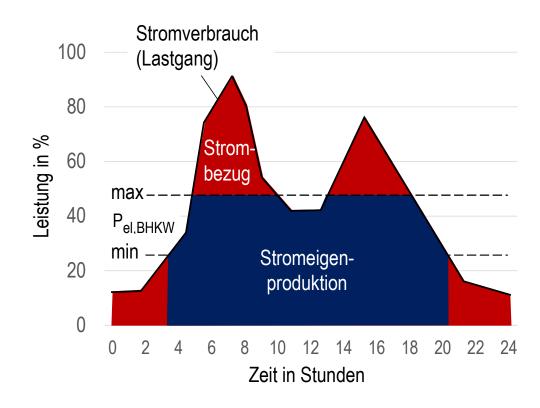
KWK - Wärmegeführter Betrieb (I)


- Betrieb nur bei Wärmebedarf (= Standardbetriebsweise)
- Auslegung auf Wärmegrundlast
 - → lange BHKW-Laufzeit (>4500 h/a)
 - → gute Wirtschaftlichkeit
 - → typische BHKW-Leistung (thermisch) bezogen auf Wärme-Spitzenlast gesamt (= 100%):
 - o 10 30 % bei Wohngebäuden
 - 15 40 % bei Nah-/Fernwärmenetzen, Hallenbädern, Krankenhäusern, ggf. Industriebetrieben
 - umso höher, je höher der Anteil des ganzjährigen Wärmebedarfs (+ zeitgleicher Strombedarf)
- gleichzeitig produzierter Strom wird selbst genutzt, überschüssiger ins Stromnetz eingespeist und verkauft (Verkaufspreis < Stromeinkaufspreis)

Jahresverlauf des Wärmebedarfs für Raumheizung und Warmwasser → BHKW-Auslegung auf Grundlast

KWK - Wärmegeführter Betrieb (II)

Beispielhafte KWK-Auslegung im Jahresdauerlinien-Diagramm



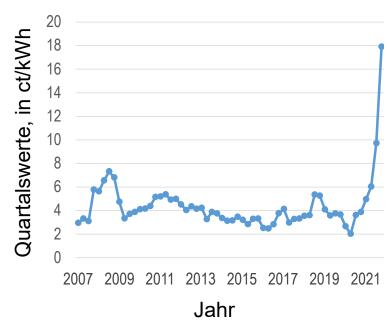
Betriebsstunden und Vollbenutzungsstunden b_N der Geräte in h/a (b_N = Betriebsstunden mit Nennleistung; bei modulierender Leistung ein fiktiver, rechnerischer Wert)

KWK - Stromgeführter Betrieb

- Betrieb in Abhängigkeit des eigenen Strombedarfs oder der erzielbaren Einspeiseerlöse
- nutzbare Vorteile
 - Reduktion teurer Strom-Spitzenlast beim Strombezug (→ Leistungspreis bei Großkunden)
 - Verkauf des Stroms zu
 Zeiten hoher Börsenpreise
 - vergütete Bereitstellung positiver Regelleistung zur Stromnetzstabilisierung (viele kleine BHKW als "Schwarmkraftwerk")
- ggf. vorhandener Nachteil: kein gleichzeitiger Wärmebedarf
 → Wärme "wegwerfen" oder speichern (wenn möglich)

Beispielhafter Zeitverlauf für stromgeführten Betrieb eines BHKW zur Reduktion von Stromspitzenlasten

KWK - Brennstoffgeführter Betrieb


- Betrieb bei Vorhandensein von Brennstoff (und auf die Menge an Brennstoff ausgelegt)
- Typisches Beispiel
 - Nutzung von Biogas aus einer Biogasanlage zur Stromerzeugung mit einem BHKW
 - Nachteil: oft kein ausreichender Wärmebedarf an (ländlichen) Standorten von Biogasanlagen → häufig Abfuhr eines Großteils der Wärme an die Außenluft

Wirtschaftlichkeit von KWK - Weitere Einflussfaktoren

- KWK-Gesetz regelt vieles, aber nicht alles
- "Erlöse" für den produzierten Strom
 - Stromeigennutzung
 - 15 ... 30 ct/kWh (Stromeinkaufspreis)
 - teils anteilige Zahlung von EEG-Umlage für selbst verbrauchten Strom
 - Stromeinspeisung
 - vermiedene Netzkosten (ca. 1 ct/kWh)
 - mittlerer Börsenpreis für Grundlaststrom im Vorquartal, volatil (siehe Bild)
 - bis zu 8 ct/kWh Förderung für 30.000 bzw. 60.000 Vollbenutzungsstunden
 - o unattraktiver als Eigennutzung (i.d.R.)
- weitere Aspekte
 - Rückerstattung der Energiesteuer für den Brennstoff, z.B. 0,55 ct/kWh Erdgas (Ho)
 - BAFA-Zuschüsse für Mikro-BHKW

Mittlerer Börsenpreis für Grundlaststrom im Vorquartal

Quelle: BHKW Infozentrum

Technology **Arts Sciences** TH Köln

UNIVERSITÄT

Hochschule Bonn-Rhein-Sieg

Ein Kooperationsvorhaben empfohlen durch die:

INNOVATION DURCH KOOPERATION

Gefördert durch:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Dieses Werk ist lizensiert unter einer Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. Ausgenommen von der Lizenz sind die verwendeten Logos sowie alle anders gekennzeichneten Elemente. https://creativecommons.org/licenses/by-sa/4.0/deed.de